Journal of Metallurgical Engineering (ME)

Editor-in-Chief: Dr. Remzi Varol
Frequency: Quarterly
ISSN Online: 2168-5568
ISSN Print: 2168-555X
RSS
Paper Infomation

Influence of Temperature on Analytical Description of Cyclic Properties of Martensitic Cast Steel

Full Text(PDF, 4450KB)

Author: Stanisław Mroziński, Grzegorz Golański

Abstract: The paper presents the results of experimental verification of analytic model of cyclic properties description. The subject of verification was the two-parameter model of Ramberg-Osgood (R-O). The research was carried out at two temperatures using the test pieces of high-chromium martensitic cast steel. The model was assessed by making a comparison of parameters of the hysteresis loop obtained from the calculations using the R-O model. Analysis of the tests and calculations results revealed their diversity depending on the temperature and level of strain covered in the research.

Keywords: Low Cycle Fatigue; Martensite Cast Steel; Cyclic Properties; Temperature; Ramberg Osgood Model



References:

[1] A. Fatemi, L. Yang, "Cumulative Fatigue Damage and Life Prediction Theories: A Survey of the State of the Art for Homogeneous Materials", Inter. Journal of Fatigue, vol. 20(1), pp. 9-34, 1998.

[2] S. Mrozinski, "The influence of loading program on the course of fatigue damage cumulation", Journal of Theoretical and Applied Mechanics vol. 49, No. 1, pp. 83-95, 2011.

[3] S. Mrozinski, J. Szala, "Problem of cyclic hardening or softening in metals under programmed loading", Scientific Problems of machines operation and maintenance, Vol. 45, pp. 83-96, 2010.

[4] D. M. Li, K. W. Kim, C. S. Lee, "Low cycle fatigue data evaluation for a high-strength spring steel", Inter. Journal of Fatigue, vol. 19(8-9), pp. 607-612, 1997.

[5] K. Mathis, Z. Trojanova, P. Lukac, ?Hardening and softening in deformed magnesium alloys", Mater. Sc. Eng. A, vol. 324, pp. 141-144, 2002.

[6] M.G. Moscato, M. Avalos, I. Alvarez-Armas, C. Petersen, A. F. Armas, "Effect of strain rate on the cyclic hardening of Zircaloy-4 in the dynamic strain aging temperature range", Mater. Sc. Eng. A, vol. 234-236, pp. 834-837, 1997.

[7] A. Nagesha, M. Valsan, R. Kannan, K. R. Bhanu Sankara, S. L. Mannan, "Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr-1 Mo ferritic steel", Inter. Journal of Fatigue, vol. 24, pp.1285-1293, 2002.

[8] M. Nagode, M. Hack, "An online algorithm for temperature influenced fatigue life estimation: stress-life approach", Inter. Journal of Fatigue, vol. 26, pp.163-171, 2006.

[9] M. Nagode, M. Zingsheim, "An online algorithm for temperature influenced fatigue life estimation: strain-life approach", Inter. Journal of Fatigue, vol. 26, pp.155-161, 2004.

[10] ASTM E606-92: Standard Practice for Strain -Controlled Fatigue Testing.

[11] W. Ramberg, W. R. Osgood, "Description of stress-strain curves by three parameters", NACA, Tech.Note, No 402, 1943.

[12] G. Masing, ?Eigenspannungen und Verfestigung beim Messing", in Proc. of the 2nd Inter. Congress of Appl. Mechnics, Zurich 1926, pp. 332-335.

[13] S. Mrozinski, G. Golanski, "Low cycle fatigue of GX12CrMoVNbN9-1 cast steel at elevated temperature", Journal of Achievements in Materials and Manufacturing Engineering, vol. 49, 1, pp. 7-16, 2011.

[14] G. Golanski, S. Mrozinski, "Fatigue life of GX12CrMoVNbN9-1 cast steel in the energy-based approach", Advanced Materials Research, vol. 396-398, pp. 446-449, 2012.

[15] G. Golanski, K. Werner, S. Mrozinski, "Low cycle fatigue of GX12CrMoVNbN9-1 cast steel at 600ºC temperature", Advanced Materials Research, vol. 396-398, pp. 326-329, 2012.

[16] S. Mrozinski, A. Lipski, "Method of Low-Cycle Fatigue Test Results Processing", Physicochemical Mechanics of Materials, vol. 1, pp. 79-83, 2012.